Codingame本周谜题「折纸曲线」解

Codingame.com Puzzle of the Week: Paper folding curve

题目简述

一张纸,一直保持向同一个方向对折,然后将折痕展成直角。从侧面看去,纸的折角会构成一个折线。

从纸的一端出发到另一端,每碰到一个折角,用1表示向左折,0表示向右折,则所有折角会构成一个10组成的序列,称为折叠序列。比如折一次是1,折两次是110,依次类推。

给定折叠次数,要求输出折叠序列中自se号元素(0-index,均包含)。

朴素解法

首先,不妨假定我们每次都向左对折,因为如果是向右,我们可以从另一侧观察,则还是向左对折。然后我们来研究下序列的特点。

  1. 对折$n$次将产生$2^n$小段的纸,$2^n-1$个折痕。也说是说序列长度为$2^n-1$,不妨在第1位补个1,序列变成1-index,共有$2^n$个元素。
  2. 考察对折点,对折点之前的纸和对折点之后的纸走向完全一致,即序列关于对折点对称,但由于先进方向相反,原来是向左的对称之后变成向右。所以准确说应该是序列关于对折点反向对称
  3. 序列与对折次数无关。观察上图,折叠2次的折痕是①②③,而再折叠一次,序列①②③④⑤⑥⑦的前三项将与折叠两次的一致。就好像把纸延长了相同的长度,再把后续的折痕加在原序列后面。所以题目中「给定折叠次数」是用不上的。

1及题设,第$2^n$个元素值恒为1。由1+2,序列的对折点所在是其实是第$2^{n-1}$个元素。又由2+3,序列关于$2^{n-1}$号元素对称,左半部分又关于$2^{n-2}$号元素对称,依次类推。转换成数学语言,用$f(i)$表示序列中第$i$号元素的值,则:

\begin{equation} \begin{split} f(2^n)&=1,\,&n=0,1,\ldots \\ f(2^n+x)&=\sim f(2^n-x),\,&0<x<2^n,\,n>1 \end{split} \end{equation}

其中"~"表示将值取反。所以如果我们已经得到了序列前$2^n$项的值,我们就能根据对称性得到$2^{n+1}$项的值,写成伪代码如下:

// 写出前7项
result = '1101100'
while len(result) < e + 1
    result += '1' + reverse_and_flip(result)
end
print(result[s:e])

时间复杂度为$8+16+\cdots=O(N)$,其中$N=2^n$为全序列长度。提交运行,前面都能PASS,但当s, e都非常大时挂了,果然还是太朴素。

优化解法

我一直在思考:序列某个元素的值由前面的某个值得到,而前面的某个值又由更前面的某个值得到,最后的种子其实就是最开始的几个元素。我们浪费了很多时间在生成不需要输出的结果上。本能觉得,对某个特定元素,可能可以仅通过它的序号,在$O(1)$的复杂度上得到值。说干就干,继续找找规律。由上述的公式,我进一步发展,当$x\neq2^{n-1}$时, \begin{equation} \begin{split} f(2^n+x)&=\sim f(2^n-x) \\ &=\sim f(2^{n-1}+(2^{n-1}-x)) \\ &=f(2^{n-1}-(2^{n-1}-x))=f(x) \end{split} \end{equation}

当$x=2^{n-1}$时,

$$f(2^n+x)=\sim f(2^{n-1})=0$$

Exciting!如果我们把元素序号用二进制表示的话,通过以上方法,我们就能使序号快速缩小(去掉首位的1)到一个很小的数,进而得到它的值。具体地:

  • 数字除去末尾的0后,如果是以连续的1结尾,则值为0
  • 否则,值为1

伪代码如下:

result = ''
// 修正0 - index到1 - index
for i in [s + 1:e + 1]
    // i是2的幂,快速返回
    if i & (i - 1) == 0
        result += '1'
            break
    end
    // 去掉末位的0
    while i & 1 == 0
        i >>= 1
    end
    if i & 3 == 3   // 11结尾
        result += '0'
    else            // 01结尾
        result += '1'
    end
end

print(result)

时间复杂度近似为$O(e-s)$。

一开始从一个实际问题出发,最后得出了一个简洁的数学表达,果然是代码令我愉快。完整代码(Python)
https://github.com/frostming/Codingame/blob/master/Puzzle-of-the-Week/paper_folding_curve.py

Last edited Link